网站首页 > 精选教程 正文
目前LangChain框架在集团大模型接入手册中的学习案例有限,为了让大家可以快速系统地了解LangChain大模型框架并开发,产出此文章。本文章包含了LangChain的简介、基本组件和可跑的代码案例(包含Embedding、Completion、Chat三种功能模型声明)。读完此文章,您可利用集团申请的api key+LangChain框架进行快速开发,体验大语言模型的魅力。
一、简介
LangChain 作为一个大语言模型(LLM)集成框架,旨在简化使用大语言模型的开发过程,包括如下组件:
LangChain框架优点:
1.多模型支持:LangChain 支持多种流行的预训练语言模型,如 OpenAI GPT-3、Hugging Face Transformers 等,为用户提供了广泛的选择。
2.易于集成:LangChain 提供了简单直观的API,可以轻松集成到现有的项目和工作流中,无需深入了解底层模型细节。
3.强大的工具和组件:LangChain 内置了多种工具和组件,如文档加载器、文本转换器、提示词模板等,帮助开发者处理复杂的语言任务。
4.可扩展性:LangChain 允许开发者通过自定义工具和组件来扩展框架的功能,以适应特定的应用需求。
5.性能优化:LangChain 考虑了性能优化,支持高效地处理大量数据和请求,适合构建高性能的语言处理应用。
6.Python 和 Node.js 支持:开发者可以使用这两种流行的编程语言来构建和部署LangChain应用程序。
由于支持 Node.js ,前端大佬们可使用Javascript语言编程从而快速利用大模型能力,无需了解底层大模型细节。同时也支持JAVA开发,后端大佬同样适用。
本篇文章案例聚焦Python语言开发。
二、基本组件
?Prompt【可选】
?告知LLM内system服从什么角色
?占位符:设置{input}以便动态填补后续用户输入
?Retriever【可选】
?LangChain一大常见应用场景就是RAG(Retrieval-Augmented Generation),RAG 为了解决LLM中语料的通用和时间问题,通过增加最新的或者垂类场景下的外部语料,Embedding化后存入向量数据库,然后模型从外部语料中寻找相似语料辅助回复
?Models
?可做 Embedding化,语句补全,对话等
支持的模型选择,OpenAI为例
?Parser【可选】
?StringParser,JsonParser 等
?将模型输出的AIMessage转化为string, json等易读格式
上述介绍了Langchain开发中常见的components,接下来将通过一简单案例将上述组件串起来,让大家更熟悉Langchain中的组件及接口调用。
三、小试牛刀
import os
# gpt 网关调用
os.environ["OPENAI_API_KEY"] = "{申请的集团api key}"
os.environ["OPENAI_API_BASE"] = "{您的url}"
import openai
from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv())
openai.api_key = os.environ['OPENAI_API_KEY']
from langchain.prompts import ChatPromptTemplate
from langchain.chat_models import ChatOpenAI
from langchain.schema.output_parser import StrOutputParser
prompt = ChatPromptTemplate.from_template(
"tell me a short joke about {topic}"
)
model = ChatOpenAI()
output_parser = StrOutputParser()
chain = prompt | model | output_parser
chain.invoke({"topic": "bears"})
输出:
"Why don't bears wear shoes?\nBecause they have bear feet!"
其中 chain = prompt | model | output_parser 按照数据传输顺序将上述声明的 prompt template、大语言模型、输出格式串联起来(Chain),逻辑清晰直接。
代码案例:调用Embedding、Completion、Chat Model
?将文本转化为Embedding : langchain_community.embeddings <-> OpenAIEmbeddings
from langchain_community.embeddings import OpenAIEmbeddings
embeddings = OpenAIEmbeddings(
model="text-embedding-ada-002",
openai_api_key=os.environ["OPENAI_API_KEY"],
openai_api_base=os.environ["OPENAI_API_BASE"]
)
text = "text"
query_result = embeddings.embed_query(text)
?文本补全:langchain_community.llms <-> OpenAI completion
from langchain_community.llms import OpenAI
llm = OpenAI(
model_name='gpt-35-turbo-instruct-0914',
openai_api_key=os.environ["OPENAI_API_KEY"],
base_url=base_url,
temperature=0
)
llm.invoke("I have an order with order number 2022ABCDE, but I haven't received it yet. Could you please help me check it?")
?对话模型:langchain_openai <-> ChatOpenAI
from langchain_openai import ChatOpenAI
model = ChatOpenAI(model_name="gpt-35-turbo-1106") # "glm-4"
model.invoke("你好,你是智谱吗?")
四、总结
LangChain作为一个使用流程直观的大模型开发框架,掌握它优势多多。希望您可以通过上述内容入门并熟悉LangChain框架,欢迎多多交流!
猜你喜欢
- 2024-12-23 应用Stream API与并行流处理大数据量集合操作
- 2024-12-23 字节二面:为什么SpringBoot的 jar可以直接运行?
- 2024-12-23 阿里云 SAE Web:百毫秒高弹性的实时事件中心的架构和挑战
- 2024-12-23 深入 Spring 框架:从核心到高级特性
- 2024-12-23 重学java:数据集合
- 2024-12-23 工业大数据平台技术架构方案(ppt)
- 2024-12-23 大数据整体架构技术方案(ppt)
- 2024-12-23 如何用20%技术解决80%问题?这份Java进阶架构师手册,告诉你答案
- 2024-12-23 深入探索 Java 复杂泛型:使用与限制全解析
- 2024-12-23 大学大数据平台架构规划方案(ppt)
你 发表评论:
欢迎- 最近发表
- 标签列表
-
- nginx反向代理 (57)
- nginx日志 (56)
- nginx限制ip访问 (62)
- mac安装nginx (55)
- java和mysql (59)
- java中final (62)
- win10安装java (72)
- java启动参数 (64)
- java链表反转 (64)
- 字符串反转java (72)
- java逻辑运算符 (59)
- java 请求url (65)
- java信号量 (57)
- java定义枚举 (59)
- java字符串压缩 (56)
- java中的反射 (59)
- java 三维数组 (55)
- java插入排序 (68)
- java线程的状态 (62)
- java异步调用 (55)
- java中的异常处理 (62)
- java锁机制 (54)
- java静态内部类 (55)
- java怎么添加图片 (60)
- java 权限框架 (55)
本文暂时没有评论,来添加一个吧(●'◡'●)